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Abstract. We examine the spacing distribution of the eigenvalues of tridiagonal real 
symmetric random matrices, the elements of which are distributed according to a Gaussian 
law. We show explicitly that for 4 x 4 matrices the distribution at small spacings behaves 
as s log's. We surmise that for N x N matrices the behaviour is 5 log'-'s and we present 
numerical results which support this conjecture. 

1. Introduction 

The current interest in quantum chaos has rekindled the study of random matrices for 
their own sake. The spectra of random matrices have been used since the 1950s in 
order to model the behaviour of the levels of nuclear Hamiltonians [ l] .  Although it 
was readily established that the experimentally obtained nearest-neighbour spacing 
distribution ( NNSD) follows closely the predictions based on the Gaussian orthogonal 
ensemble (GOE) of random matrices [ 2 ]  there was no convincing explanation of this 
fact: nuclear Hamiltonians are not random. The study of quantum chaos or, more 
precisely, of the quantum behaviour of systems which are chaotic at the classical limit, 
shed some light on the matter. Thus, in [3], it was conjectured that the statistical 
properties of quantum spectra of classically ergodic Hamiltonians are given by the 
GOE of random matrices (provided certain symmetry conditions are satisfied). This 
would explain why the random matrix approach worked well for nuclear Hamiltonians: 
one can easily assume that their behaviour, if not ergodic, is highly chaotic. This has, 
of course, merely displaced the problem by one step, as it is now clear that chaotic 
quantum Hamiltonians are not random [4]. Thus before the ultimate understanding 
of the question is attained one must explain what is causing the GOE behaviour to 
appear. Meanwhile the study of quantum Hamiltonians and random matrices progresses 
along often intersecting paths. 

One domain where random matrices have been of considerable help is in the study 
of the transition from ergodicity to integrability. While the behaviour of the quantum 
spectra of the two limits is well known [5,6] and, moreover, universal (i.e. it does not 
depend on the detailed structure of the system), this is not the case for the transition 
zone. Here the use of the analogy between random matrices and quantum Hamiltonians 
has allowed a quantitative study of the sole universal feature of this 'intermediate' 
behaviour of the system [7]. As soon as integrability is lost the N N S D  ceases to be 
Poisson-like (e-') and  falls linearly to zero at  very small spacings [8]. The slope is 
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inversely proportional to the integrability-breaking perturbation [7,9]. As the system 
moves towards ergodicity the distribution resembles more and  more the COE one or  
even simply the Wigner surmise 47s . One thing that was clear from our study 
[7] (see also [ lo ] )  was that one needs banded matrices, i.e. matrices with non-zero 
elements occurring at or near the diagonal only, in order to describe the transition 
region. In [7] we considered tridiagonal matrices using a particular statistics which 
was suitable for our study. So one natural question that arises is what happens to the 
N N S D  when these constraints are raised: what is the level distribution of a band matrix 
with Gaussian-distributed random matrix elements? 

Curiously, very little is known about band random matrices [ll], but lately the 
subject has been the focus of ever increasing interest [ 121. The familiar 2 x 2 model is 
not of any use here. Only recently has a study of 3 x 3  matrices made its appearance 
in the literature [13] and yielded an interesting result. While the full COE matrix (of 
any size) has an  N N S D  which starts linearly at the origin with a slope which goes from 
$7 for 2 x 2 to ;r2 for infinite matrices, the 3 x 3 matrix with the (1,3) matrix elements 
equal to zero has a distribution which behaves as s log(l /s)  at the origin. However, 
the aforementioned study does not go beyond the 3 x 3 stage. In the present work we 
will present our findings on an  explicit treatment of the 4 x 4  case and formulate a 
conjecture for larger matrices. 

2. The nearest-neighbour spacing distribution for matrices of dimensions 2, 3 and 4 

As stated in the introduction, we deal exclusively with random matrices belonging to 
the COE in this paper. This means that the matrices considered are real, symmetric 
with their elements obtained through a Gaussian distribution characterized by its width 
(T (we recall that the width for the diagonal matrix elements is f i  times that of an  
off-diagonal one). 

The NNSD of 2 x 2 GOE random matrices is the well known Wigner surmise (where 
the mean level spacing has been normalized to unity) 

(1) 

The essential point here is that the level repulsion behaves linearly for small spacings. 
In fact, this is a general feature of the GOE, provided we restrict ourselves to full 
matrices. When the matrices develop a band structure, this is not the case any more. 
In [ 131, Molinari and Sokolov computed the small-spacing behaviour of a 3 x 3 COE 

random matrix with a vanishing HI, matrix element. They started from the probability 
measure written as e-(l/4cr2)Tr H 2  Hi,, dH,, which they transformed (following the stan- 
dard approach [ll, 141) to a new set of variables given by the eigenvalues of the 
random matrix and the angles of the orthogonal transformation that diagonalizes it. 

= 0 would destroy the rotational invariance of the 
‘volume element’ l-Ii,, dH,,. It is simplest for the subsequent calculations to restore 
the invariance and  introduce the constraint through a S distribution. We can then 
rewrite the probability measure as 

p 2 ( s )  =ins e - ~ r / 4 ) r 2  

However, the constraint that 

H 16 - E,l H dE,  dR .  e - (  1/4v’l Tr H’ 

‘ C J  I 

In the case of 3 x 3 symmetric matrices the orthogonal transformation needed for 
diagonalization belongs to SO(3). The rotation angles are simply the Euler angles and  
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d R  is given by sin p d a  d/3 dy. The N N S D  is obtained from the joint probability 
distribution of the eigenvalues which is given by 

p 3 ( ~ ,  , E 2 ,  E .  7 - - c e- '  I / 4 t r 2 )  1 E :  n lE,-E,I  1 6 ( H l i ) d R .  ( 2 )  

Expressing HI3 in terms of the eigenvalues and  the Euler angles the authors of [13] 
obtained 

" I  

H,3 = sin p ( E  cos a + A sin cy cos /3) (3) 

with A = ( E ,  - E , )  sin' y + ( E 3  - E > )  cos' y and B = ( E ,  - E a )  sin y cos y. Integrating 
the S function over the angle cy we obtain 

1 1 
A COS a cos /3 - B sin a 

6 ( H , , )  sin p d a  dp d y  = 
a = B / A  

The integral over /3 can be readily expressed in terms of the complete elliptic integral 
K and we thus have 

A 

In  order to investigate the small-spacing behaviour of P3( E , ,  E , ,  E 3 ) ,  we choose one 
of the differences of eigenvalues, e.g. E l  - E ,  equal to a small quantity s. For small s, 
B goes to zero, the argument of K goes to unity and  K diverges logarithmically [ 151. 
Thus the behaviour of I at small s is 5 2 d y  log(A/ B)/A. 

We can check that the integration over y does not cancel the coefficient of the 
logarithmic term. Thus, combining the latter with the factor s from IT,,, I E, - EJ,  we 
obtain the small-spacing behaviour of P 3 ( s )  in the form 

1 
P3(s) = s log -. 

S 

Next we turn to the 4 x 4 case, which is our main objective. First we remark that 
the orthogonal transformation needed for diagonalization belongs here to SO(4) and 
thus involves six angles. The invariant measure of the rotation group can be written 
as [16] 

6 
d R  =sin' 06 sin e5 sin e2 n de , .  

, = I  
(7) 

The tridiagonal band matrix is realized through H,4 = HI3 = H24 = 0. The elements to 
be set to zero are given by expressions analogous to (3) although rather longer. In fact, 
given the bulk of the computations, all the calculations involved were performed using 
the REDUCE algebraic manipulation language [17]. The integration over the three 6 
functions was performed over the angles e 6 ,  e2 and O s ,  substituting at each step. The 
end result is an expression of the form 

I = F( E2 - E , ,  E3 - El , E ,  - E l ,  01, 03, 04) d e l  de3 de4 .  (8) i 
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The function F has a very complicated expression, which we will not reproduce here. 
The interesting point is that when two of the eigenvalues are very close to each other, 
say IE3- Ell = s<< 1, one can show that I behaves as log’(l/s). (We recall at this point 
that in order to obtain the spacing distribution P4( s j one must multiply the angular 
integral I by n,,, IE, - E,l which contains one s factor.) In the small-s limit the function 
F can be written as 

o( BS + c COS’ e, -  COS e, COS e,l) 
A(S/COS* e,, E * -  E , ,  E ~ -  E , ,  o , ,  e,)+e(s, COS? e,) 

Js2 + COS’ e,(s +cos2 e,)  X 

where B and  C have the same behaviour as the numerator of the fraction. 
All three functions A, B and C are finite and, moreover, are bounded away from 

zero for generic values of E’ - E , ,  E4- E, ,  0, and 04, even for cos’ el  << 1. Note that, 
at lowest order, the dependence on s is through the first argument. The presence of 
the Heaviside function 0 is due to the integration over O r :  one gets a contribution 
only if the S function has a zero for lcos 02/ < 1. In the domain s << cos’ 03<< 1, A goes 
to a finite limit A. Thus 

( 9 )  
d e ,  @(BS + c COS’ e3 - /COS e, COS e,1 j 

J S * + C O S *  e3(s+c0S2 e , )  I = 5 de4  A 1 de3 5 
Integration over 0, for 0 <cos’ 8 ,  < C’ cos’ 0, gives a contribution of the order of 

-log( 1 1++) 
cos e3 

Integration over O3 in the domain s<< cos’ e,<< 1 gives the contribution of order 
log*(l/s) .  (Note that for cos’ 03<< s, expression (10) does not hold and  there is n o  
divergence as cos O3 + 0.) The final integration over O4 does not cancel the coefficient 
of log2( l / s )  which is thus the leading behaviour of I as s + O .  Thus, the N N S D  P4(s) 
behaves as s log2( l / s )  for vanishingly small s. 

One question that arises naturally at this point is what happens when less than 
three matrix elements are set to zero. The calculations are still quite lengthy and we 
will limit ourselves to a mere presentation of the results. When two matrix elements, 
say HI4 and H24, are set to zero, we find that the corresponding integral I behaves as 
log( l / s )  and  thus, at small spacings, the NNSD behaves as s log( l /s) .  The case of only 
one vanishing matrix element HI, is even more interesting. Here the corresponding 
integral I remains bounded as s+O, but has a non-analytic behaviour of the form 
k + s  l og ( l / s ) .  Thus the N N S D  still vanishes linearly at the origin, but the singularity 
manifests itself on the second derivative. 

Let us now summarize our findings. For 2 x 2 matrices the NNSD behaves linearly 
at  the origin: P 2 ( s )  = s. For 3 x 3 matrices only one matrix element must be put to zero 
and  we have P, ( s )=s  log( l / s ) .  For 4 x 4  tridiagonal matrices we have P4(s)= 
s log*(l/s) .  We can already see the pattern emerging: as the dimension of the band 
matrix increases by one so does the power of the leading log. Thus for an N x N 
tridiagonal matrix we surmise that the NNSD at small spacings will be of the form 

P N ( S j Z S  logN-’(l /s) .  (11) 
In fact, for an N x N matrix we have N (  N - 1 ) / 2  integration angles. After integrating 
over the ( N  - 1 ) ( N  - 2 ) / 2  8 functions we are left with N - 1 angles: N - 2 of them 
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would lead (upon integration) to one power of log each, and the remaining would just 
give an  angular averaging. One  must bear in mind that expressions like (1 1) concern 
only the dominant term. Subdominant terms exist as well and their relative coefficient 
with respect to (11) will depend on the matrix size. In  fact, one can offer an  even 
bolder conjecture than (11). If we consider large matrices then we believe that, for 
s + 0, the behaviour of P N ( s )  will be roughly s multiplied by the truncation, at order 
N - 2, of the Taylor series of eAX in terms of x = log( l / s )  and where A -+ 1 as N + 00. 

Therefore PN ( s )  will be close to a Poisson distribution except in a very small region 
around the origin. As we will see in the next section these arguments will be further 
strengthened by the results of numerical computations. 

3. Numerical results and conclusion 

In order to illustrate (and  confirm) the predictions of the previous section we have 
performed extensive numerical computations, diagonalizing millions of random 
matrices and  computing the NNSD. In  all the examples presented below our statistics 
are based on more than lo7 levels. In a first set of figures (figure l ( a ) - ( d ) )  we present 
the global distribution as a function of spacing for matrices of dimensions 3, 4, 5 and 
8. It is clear that already at N = 3  the N N S D  does not follow the Wigner distribution 
while for increasing N the tail becomes more and more an  exponential Poisson-like 
one. What is remarkable is that an excellent overall fit can be obtained with the Brody 
[ 181 distribution: 

a = ~ [ ( 4 + 2 ) / ( q +  1 ) 1 ~ 7 + ~ .  (12) 
-e 7 # I  + I P B ( s ) = a ( q + 1 ) s q  e 

As can be clearly seen, from (12), this expression is intermediate between Poisson and  
Wigner, two limits that it attains for q = 0 and q = 1 respectively. On the other hand, 
for every non-zero value of q, it vanishes at s = 0 but with an infinite derivative (unless 
q = 1 ) .  This vertical slope is a first, rough explanation of the success of the Brody 
ansatz in describing the NNSD of tridiagonal matrices. From our calculations we were 
able to extract the N dependence of q :  it turned out that l / q  is a linear function of 
N, i.e. l / q  = p N +  v. Still at small spacings, there are substantial deviations due to the 
presence of logarithms. This is clearly illustrated in figure 2( a)- (  d )  where we present 
the (very) small-spacing behaviour of P ( s )  for N = 3,4 ,5  and  8. The Brody distribution 
cannot reproduce this small-scale structure precisely. On the contrary a (single global 
parameter) fit based on the truncated expansion of e' at order N - 2 with x = log( l / s )  
(taking A = 1) is excellent. In fact what we have done is to perform a x1 fit for various 
orders of the truncation and then minimize with respect to the order. In  each case the 
optimal order of the leading log turned out to be exactly N -2 ,  in perfect agreement 
with our results (up  to N = 4) or with our conjecture (for N > 4). 

Rewriting (12) as 

(13) 
we remark that the term e"-Yi 'Og ' l  " IS ' exactly the summation to infinite order of the 
truncated expansion we introduced in our conjecture at the end of section 2. This 
would explain the success of the Brody distribution even though the behaviour for 
very small s of the real distribution is not a power law. In fact, except for a very small 
region which is expected to shrink exponentially (which is in agreement with our 
numerical results) the truncated series is well represented by its resummation to all 
orders, namely e''"'' log"'". 

p B ( s ) = a ( q + l ) s  e l l - Y i l o g l i  \ l e - u 5 j + '  
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Thus the detailed numerical results we have obtained confirm the prediction of the 
authors of [ 131 for 3 x 3 matrices, and the one presented above for matrices of dimension 
4. Moreover, they support the conjecture we formulated for matrices of higher 
dimensions. It would be interesting to try to prove this conjecture. However, this would 
necessitate a novel approach as the (brute force) method we used for 4 x 4 matrices is 
limited to matrices of small dimensions. If such an  approach is found then it could 
also be used for the study of the spectra of matrices which are not tridiagonal but 
have only some vanishing elements. Another interesting problem would be study of 
the spectral statistics of banded matrices belonging to the other two Gaussian ensembles 
[ 141 of random matrices, namely unitary and  symplectic. 
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